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This paper presents a general two-dimensional model for rotating barotropic flows
over topography. The model incorporates in a vorticity—stream function formulation
both inviscid topography effects, associated with stretching and squeezing of fluid
columns enforced by their motion over variable topography, and viscous effects, due
to the Ekman boundary layer at the solid bottom. From the present formulation, con-
ventional two-dimensional models can be recovered. The model is tested by means of
laboratory experiments on homogeneous vortices encountering irregular topographies.
The experimental observations are then compared with the corresponding numerical
simulations based on the general model. The results suggest that such a formulation
incorporates both inviscid and viscous topography effects correctly.

1. Introduction

Two-dimensional motion is commonly observed in laboratory experiments in a
rotating fluid tank. When the rotation axis is aligned with gravity fluid motion is
predominantly horizontal, i.e. in a plane perpendicular to the rotation axis. This
phenomenon was predicted by S. S. Hough in 1897 (Gill 1982, p. 506) and by
Proudman in 1916, and has been observed and reported in numerous experimental
studies since the early works of Taylor (1923). In geophysical situations, nearly two-
dimensional motion is also observed in large-scale flows, such as cold and/or warm
eddies in the oceans, and tropical cyclones in the atmosphere. In these cases, the
vertical direction is defined by the local component (perpendicular to the surface) of
the planet’s angular velocity. The two-dimensional character of such flows is due to the
small ratio between the vertical and horizontal scales of motion. It has to be stressed,
however, that the theoretical and experimental models developed in this study are
strongly simplified models of large-scale flows affected by the Earth’s rotation.

The essentially two-dimensional character of experimental and geophysical flows
obviously does not strictly hold. For nearly geostrophic flow over weak topography
variations, however, flow motion can be assumed predominantly two-dimensional,
with small deviations due to topographic effects. There are two main effects associated
with the presence of bottom topography: (a) stretching and squeezing of fluid columns
enforced by their motion over variable topography, and (b) damping effects associated
with the Ekman boundary layer at the solid bottom. Henceforth, they will be referred
to as inviscid and viscous topography effects, respectively.
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Inviscid topographic effects on a rotating homogeneous fluid layer can be de-
scribed by the so-called barotropic non-divergent equations (see e.g. Grimshaw, Tang
& Broutman 1994) or, for small topographic variations, by the quasi-geostrophic
approximation (see e.g. Pedlosky 1987). In these models, the relative vorticity evolu-
tion is associated with stretching/squeezing of fluid columns as the flow experiences
changes in depth.

A more complete description of the flow motion requires, however, the inclusion
of bottom viscous effects, associated with the no-slip boundary condition at the solid
bottom. In earlier studies some models were presented which incorporate the role
of the Ekman layer in the geostrophic interior flow. Under the quasi-geostrophic
formulation, bottom friction effects are usually included by adding a linear term in
the relative vorticity equation. Wedemeyer (1964) derived a more complete model
for spin-up in a rotating cylinder, which was later applied to the study of the spin-
down of barotropic vortices by Kloosterziel & van Heijst (1992) and Maas (1993).
Such a model, however, is limited to axisymmetric flows over a flat surface. Zavala
Sanson & van Heijst (2000a, hereafter referred to as ZH00) report on a more general
model, which satisfactorily describes the evolution of both axisymmetric and non-
axisymmetric laboratory vortices. These studies used the linear Ekman condition over
a flat bottom. In some other studies expansions in the Rossby number were carried
out in order to obtain a nonlinear Ekman condition (see e.g. Hart 1995, 2000). One
of the main results obtained with such formulations is that cyclones decay faster than
anticyclones. This can also be deduced, however, using the linear Ekman condition
and retaining the nonlinear Ekman terms in the evolution equations, as shown by
ZHO00 and Zavala Sanson, van Heijst & Backx (2001). Besides, using the nonlinear
Ekman condition leads to complicated equations that are difficult to manipulate,
which obscures the physical processes involved.

This paper presents a general two-dimensional model for barotropic flow including
inviscid and viscous topography effects. The analysis described here incorporates both
effects in a two-dimensional model, written in a vorticity—stream function formulation,
which basically consists of an evolution equation for the vertical component of the
relative vorticity. The crucial step in the derivation consists of introducing stretch-
ing/squeezing effects (due to variable topography) together with the well-known linear
Ekman condition (the vertical velocity induced by the Ekman layer at the bottom),
obtained by integrating the continuity equation in the vertical direction. Then, the
nonlinear terms associated with the Ekman effects in the resultant vorticity evolution
equation are retained (a similar procedure was applied in ZH00 in order to include
only Ekman friction, linear and nonlinear, produced by a flat bottom). The inclusion
of nonlinear Ekman terms in the vorticity equation, in addition to the well-known
linear Ekman term, is the main characteristic of the physical model. This approxi-
mation is valid only for relatively smooth topographies, where the Ekman condition
can be used. In addition, the Rossby number, which indicates the relative importance
of rotation effects, is required to be small to moderate (O(1) or less). The present
formulation can be reduced to well-known conventional models when bottom friction
and/or variable topography are ignored.

In order to validate the general two-dimensional model, laboratory experiments
on barotropic vortices over different topographies were compared with numerical
simulations based on this approximation. The principal aim of the simulations is to
investigate to what extent the two-dimensional model including topographic effects
(inviscid and viscous) is able to reproduce the main characteristics of the experimen-
tally observed flow evolutions, therefore capturing the basic physical mechanisms in
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the problem. For this purpose, the experimental results of Vosbeek (1998) on the
evolution of a tripolar vortex affected by a weak parabolic topography (equivalent to
the so-called y-plane) are considered. It is found that her quantitative and qualitative
measurements are well-reproduced by numerical simulations based on the extended
formulation. Furthermore, it is shown that the model is clearly superior to the con-
ventional barotropic non-divergent equations, which do not include bottom friction,
and to the classical quasi-geostrophic approximation with linear Ekman damping. In
addition, an example of a vortex encountering a topographic ridge is presented. This
problem was studied by means of laboratory experiments and numerical simulations
by Zavala Sanson (2002). Although the ridge is a more complicated topography, the
general model is able to reproduce qualitatively the main experimental results.

The paper is organized as follows. The extended two-dimensional model is derived
in §2, and it is shown that this formulation can be reduced to other conventional
two-dimensional approximations. In §3 the model is tested by means of numerical
simulations of laboratory experiments in a rotating tank. In §4 some final remarks
are presented.

2. Ekman friction over variable topography
2.1. The model

Here the extended model with inviscid and viscous topography effects is derived (a
similar procedure was followed in ZHOO for including only viscous effects over a
flat bottom). Consider a homogeneous fluid layer in a Cartesian coordinate system,
rotating with angular frequency @ about the z-axis. In the vertical direction (aligned
with the gravitational acceleration), the motion is confined to

hg <z < h+ hg, (2.1)

where h(x, y,t) is the layer depth and hg(x, y) describes the spatially variable bottom
topography. Note that h contains the free-surface elevation associated with the flow
itself, which may be time-dependent. The horizontal velocity components u# = (u,v)
are considered z-independent, and the hydrostatic balance is assumed to apply in the
vertical direction. As usual, the horizontal pressure gradients are eliminated by taking
the curl of the momentum equation, yielding
ow ow ow ou  Ov )
at+uax—|—vay+(ax—l-ay>(a)—l—f)—vau, (2.2)
where w = dv/0x — du/dy is the relative vorticity, f = 2Q is the Coriolis parameter
with Q the rotation rate of the system, ¢ is the time, v is the kinematic viscosity and
V2 = 0%/0x* + 0%/0y* is the horizontal Laplacian operator. The continuity equation
is
ou Jv 0w
o + 3y + i 0, (2.3)
where w is the vertical velocity component.

Adequate expressions to substitute the horizontal velocity components (u and v)
and the horizontal divergence (du/0x 4 0v/dy) in (2.2) are obtained by integrating
the continuity equation over the fluid depth, ie. from z = hg to z = h+ hy. This
integration, which is possible since u and v have been assumed z-independent, yields

ou 0v
—+—)h= _(W‘Z=h+l‘13 - W‘z:hg ) (24)
ox Jy
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Ignoring wind stress, the vertical velocity on the free surface is given by the
kinematic condition

D
W‘Z:h+h3 = E(h + hB)a (25)

with D/Dt the material derivative.

For low-Rossby-number flows, the vertical velocity induced by the thin Ekman
layer at the bottom is given by the so-called Ekman condition, which states that this
velocity is proportional to the relative vorticity of the interior flow outside the Ekman
layer. For variable bottom topography the Ekman condition can be expressed as (see
e.g. Pedlosky 1987)

Wle—p, = u*Vhg + 16r0, (2.6)

where the thickness of the Ekman layer is

1/2
o5 = (2)() . 27)

Note that the first part of the Ekman condition, - Vhg, expresses the vertical velocity
induced by the shape of the topography (see e.g. Charney & Eliassen 1949; Huppert
& Bryan 1976), which is zero for a flat bottom.

With (2.5) and (2.6) the horizontal divergence in (2.4) may be written as

ou 0v 1Dh  Of

xtay” hoe T (28)
This expression states that the horizontal divergence is caused by changes in the fluid
depth associated with free-surface variations and topography effects (both included in
h) and by the vertical velocity induced by the Ekman layer at the bottom. Neglecting
the temporal variations of the free-surface elevation, the time derivative can be filtered
out, i.e. h = h(x,y), and (2.8) then becomes

ou Ov 1/ oh oh OF

xtay = h
Note that for the flat bottom case (h = H = constant) 6y /H = E'/?, with E = 2v/fH?
the Ekman number. More importantly, note that this expression for the horizontal di-
vergence also accommodates a flat bottom and spatially variable surface topography.
In such a case, the upper boundary condition is simply w|,—, = udh/0x + vdh/dy,
whilst the lower boundary condition is w|,—g = %5Ew.
Substitution of (2.9) in (2.2) yields, after some manipulations,

ow 0q Jq 5 OF
-1 i - = 2.1
o +huax+hvay vWo 2hw(w + 1), (2.10)
where
q= wT-'_f (2.11)

is the potential vorticity.
Expressions for u and v are obtained by rewriting (2.9) as

0 0
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and by defining a function i such that

oyp
hu — %5}51} = @, (213)
ho + 155u = _o (2.14)
0x

From these equations, the corresponding expressions for the velocities in terms of
the stream function are obtained:

1 1 /o0y OOy
_ 1w _oedw 2.1
T T (0207 h (ay 2h ax>’ 215

1 1 oy  Op Oy
- - (@ _xw) 2.1
v 1+(5E/2h)2h( ax 2hay> (2.16)

Assuming, however, that (§z/2h)> < 1, i.e. that the Ekman layer thickness is always
much smaller than the fluid depth, the horizontal velocities can be simplified as

follows:
1 [0y OOy
_ Loy oraw 2.1
! h<ay 2hax>’ 217)
1 oy  O0g 0y
v=g (‘ax - ylay> : 2.18)

By inserting (2.17) and (2.18) in the definition of the relative vorticity (o =
0v/0x — du/0dy) it is verified that
1 1 og 2
~ ﬁVh Vy + ﬂﬁJ(h,w), (2.19)
where J is the Jacobian operator. Finally, the evolution equation for the relative
vorticity is obtained by substituting (2.17) and (2.18) in (2.10):

o
ot

The horizontal velocities (2.17) and (2.18), the modified Poisson equation (2.19)
and the vorticity evolution equation (2.20), represent the w—yp formulation of the
two-dimensional model for a rotating fluid over variable topography, including the
Ekman damping.

Note that the Ekman terms are proportional to the x, y-dependent factor dg /2h(x, y).
Advection effects driven by the Ekman layer are represented by the third term on
the left-hand side of (2.20), while the Ekman terms on the right-hand side represent
stretching effects associated with the Ekman suction or blowing. Obviously, Ekman
effects are enhanced in shallow layers, i.e. where h decreases.

w = V21p—|-

B B
+J(q,p) — Tsz Vg =vwWo — 2—260(60 + 1) (2.20)

2.2. Summary of two-dimensional models

The general two-dimensional model derived in the previous subsection can be reduced
to some other approximations as follows.

(i) Purely two-dimensional model

First, consider a flat bottom (h = H = constant, Vh = 0) and no bottom friction
(0g = 0, see figure 1a). Defining the stream function as

1

8= 2.21
T (2.21)

P
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FIGURE 1. Summary of two-dimensional models in a rotating system with and without topography
effects: (a) purely two-dimensional model, (b) barotropic non-divergent model, (¢) two-dimensional
model with Ekman friction over a flat bottom, (d) general two-dimensional model.

the corresponding equations become

o™
u= gj—y (2.22)
o)
v=— gjx , (2.23)
w=—Vp"), (2.24)
o
a—? + J(w,p") = W, (2.25)

which is the well-known two-dimensional model without topography effects.

(ii) Barotropic non-divergent model

For arbitrary topographic variations h = h(x,y) and ignoring bottom friction
(0 = 0, see figure 1b) the model reduces to

10y
1oy
=——— 227
v A (2.27)
w= —1V2 + th -V (2.28)
- h w h2 wa .
%’ +J(q, ) = Wo. (2.29)

Note that in this case, it is not necessary to redefine the stream function. For further
details see e.g. Grimshaw et al. (1994). This model may be used to describe inviscid
topography effects on experimental vortices when the duration of the experiments is
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shorter than the Ekman period (see e.g. Zavala Sanson & van Heijst 2000b).

(iii) Two-dimensional model with Ekman friction over a flat bottom

For a flat bottom (h = H = constant, Vh = 0) but now considering bottom friction
(0 # 0, 65/H = E'?, see figure 1c), the stream function (2.21) can again be used,
and the equations transform to

o™ op™

Y= g’y — g ;Px , (2.30)
w0y

_ _1g\» 2.31

v w2 " (2.31)

w = -V, (2.32)

%—‘f + J(w,p") = JEV2Vp") - Vo = vWo — LEo(w + f). (2.33)

This model, in which the Ekman effects are represented by the terms proportional
to E'/2, was derived in ZHO00. The conventional two-dimensional model with Ekman
damping (used in many other studies) does not consider the nonlinear Ekman effects,
but only the linear stretching term E'2wf/2. It was demonstrated in ZHOO that
the description of barotropic vortices in laboratory experiments (during periods
comparable to the Ekman timescale) is significantly improved when nonlinear Ekman
terms are considered in the corresponding numerical simulations.

3. Experiments and simulations

The model of two-dimensional flow over spatially varying topography with Ekman
effects given by (2.17), (2.18), (2.19) and (2.20) is tested by means of laboratory
experiments and numerical simulations. A similar procedure was followed by ZH00
in order to evaluate the model given by (2.30)—(2.33), which includes Ekman effects
on a flat bottom, i.e. with no topographic variations. Here, laboratory experiments
on barotropic vortices over variable topography for times of the order of the Ekman
period, are compared with the corresponding numerical simulations based on the
general model. In order to do this, it is useful to perform experiments from which
both qualitative and quantitative measurements can be taken. As shown in ZHOO0,
quantitative measurements of vortices over a flat bottom are relatively easy to obtain.
Over variable topography, however, this is not usually the case because of experimental
difficulties and/or complicated flow behaviours. For this reason, the evolution of a
tripolar vortex in the presence of a parabolic surface, presented by Vosbeek (1998),
is examined first. Due to the relatively small depth variations in that experiment, the
author was able to obtain quantitative measurements, namely the peak vorticity in
the vortex core, which can be compared with simulations using model (2.17)—(2.20).
Then, the qualitative behaviour of a non-isolated cyclonic vortex over a topographic
ridge is observed and compared with the evolution of passive tracers from numerical
simulations. In this case the bottom variations are much more dramatic, which
produces a complicated distortion of the vortex.

It is important to emphasize that, in order to appreciate bottom friction effects,
the duration of the experiments and simulations must be of the order of the Ekman
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> 7\ 12
Te= = (7)o @)
where H,, is the average depth over the topography. By taking the kinematic viscosity
as v ~ 0.01 m?s~!, the Coriolis parameter f ~ 1s~!, and the mean depth H,, ~ 15cm,
the Ekman period is 200s, approximately.

The numerical simulations were performed by using a finite differences code. The
relation between the relative vorticity and the stream function, (2.19), is solved by
using a multigrid method from a NAG routine. This procedure has already been
successfully used in Zavala Sanson & van Heijst (2000b), where the barotropic non-
divergent equations were solved. For further details on the numerical scheme see
also van Geffen (1998), who used a similar method for including inviscid topography
effects.

period, defined as

3.1. Vortices on a y-plane

It has been shown in previous experimental studies that vortices created over a flat
bottom and off the centre of a rotating tank experience changes in depth associated
with the parabolic surface (see e.g. Velasco Fuentes, van Heijst & Lipzig 1996; Vosbeek
1998). In geophysical fluid dynamics, this effect is usually referred to as the y-effect,
which represents an approximation of the Coriolis parameter near the poles, where
its spatial variations can be represented by a quadratic term. The y-effect is usually
ignored in experiments in which changes in depth due to bottom topography are
greater than those associated with the free surface (e.g. Zavala Sanson & van Heijst
2000b). For a flat bottom, however, such an effect might be important in the flow
evolution. Here, the experimental results of Vosbeek (1998) concerning the behaviour
of tripolar vortices under the influence of the y-effect are considered. Then a typical
experiment is numerically simulated by using the extended model, which can also be
applied for flows over a flat bottom and a spatially variable surface, as mentioned in
§2.

The cyclonic structures studied by Vosbeek (1998) are vortices consisting of a
cyclonic core surrounded by an annulus of oppositely signed vorticity in such a way
that the vortex contains zero net vorticity. Such isolated vortices are easily created
by placing a small, bottomless cylinder in the tank, stirring the fluid in the cylinder,
and then removing it, thus releasing the vortex in the ambient solidly rotating fluid
(see e.g. Carnevale, Kloosterziel & van Heijst 1991). For the flat-bottom case, typical
radial distributions of the vorticity and azimuthal velocity are

onri=on (12 (2 Yo (- (3)). 52

Dai(r) = “’TOF exp (- (%)) , (3.3)

where wq is the peak vorticity, R a horizontal length scale, r the radial distance to
the centre of the vortex, and o a parameter controlling the shape of the radial profile.
Isolated cyclonic vortices over a flat bottom are often observed to evolve towards
a tripolar structure, formed by a cyclonic core with two anticyclonic satellites. The
tripole rotates in cyclonic direction while slowly decaying (van Heijst, Kloosterziel &
Williams 1991; ZHO00). When the vortex is created off the centre of the rotating tank,
the tripolar structure is again formed, but now showing an asymmetric behaviour due
to the y-effect, which induces the vortex to move towards the centre of the tank.
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FIGURE 2. Sequence of vorticity contours of a tripolar vortex in a laboratory experiment taken from
Vosbeek (1998). The Ekman period is Ty = 211 s. Positive (negative) contours are plotted with solid
(dashed) lines. Contours are drawn for v = —0.6, —0.5, ..., —0.1, 0.2, 04, ..., 2.4. The measured
vortex parameters are o = 1.8, R = 7.5cm, and wy = 5s~'. The domain shown is a 80cm x 80cm
square.

Figure 2 shows a sequence of vorticity contours of a tripolar vortex in a laboratory
experiment under the influence of the parabolic surface. The vorticity (and velocity)
fields were obtained by means of passive particles floating over the free surface,
from which their velocities can be obtained, and fitting the experimental data to
(3.3). The experiment was performed in a rotating tank with horizontal dimensions
150cm x 100cm. The domain shown is a square of 80cm x 80cm, centred at the
axis of rotation. The tank is rotated in the anticlockwise direction at a constant rate
of @ = 0.61s7!, which corresponds to a Coriolis parameter f = 2Q = 1.22s7!. Filled
with fresh tap water, the tank is set at the specified constant rotation about 30 min
before the start of the experiment in order to ensure that the fluid has reached a state
of solid-body rotation. The parabolic shape of the surface is given by

27'2

h(ry=H + —, (3.4)

8g
where H = 16cm is the fluid depth at the rotation axis, g the acceleration due to
gravity and r the distance from the rotation axis. Note that depth variations are
very small compared with H; for instance at r = 40cm the elevation of the surface
is only 0.3cm. For this reason, and considering that the vortex is rather intense,
topographic waves are very weak, and therefore not relevant to the flow evolution.



248 L. Zavala Sanson and G. J. F. van Heijst

40 40 40
20 20 20
N o i - )
-20 S22 | 20 =27 | 20
40 t=55s 40 80s 0 955
—40 -20 0 20 40 -40-20 0 20 40 -40-20 0 20 40
40 40 40
20 20 20
) 3
0 0 0 i ”’1@"{'}#\\1‘
\\\:h |l£/,,/
-20 20 Jei | 20 SIS
1355 150 s
—40 —40 -40
—40 -20 0 20 40 -40-20 0 20 40 -40-20 0 20 40
40 40 40
20 . 20 - 20
’\\(‘;\\\\ Bk ,‘{75,1 g
0 >’ 0 N 0 (7 Y
-20 RN -20 g | =20 -
165s 180s 195s
—40 -40 -40
—40 -20 0 20 40 -40-20 0 20 40 -40-20 0 20 40
40 40 40
20 20 ; 20 -
0 AW -\T}\*f- 0 ”\Sj\ 0 \(\\EI
{/,,\l@ W) - @ N
AL ~7 [T\ ( )
-20 < -20 \\\; -20 =T,
210s 225s ~ 240s =
—40 -40

-40
Z40-20 0 20 40 -40-20 O 20 40 -40-20 0 20 40

FIGURE 3. Sequence of vorticity contours of a tripolar vortex in a numerical simulation based on
the extended model, and using the same flow parameters and contours as in the experiment shown
in figure 2. All panels except the last one are comparable with that experiment.

The Ekman period is about 210s. Taking the origin (0,0) at the centre of the tank,
an isolated vortex was created approximately at (20cm,0cm), ie. at the right-hand
part of the domain. The first plot was taken 53s after the creation of the cyclone.
At this time, the measured vortex parameters are « = 1.8, R = 7.5cm, and wy = 5571,
whilst the position of its centre is approximately (16 cm, —4 cm). The Rossby number €
associated with the vortex can be defined proportional to vy (R)/f R = 0.75. Although
the vortex is initially intense (¢ ~ O(1)) it gradually decays due to bottom friction
and to lateral diffusion of momentum. In a similar fashion as in the flat-bottom case,
the vortex evolves towards a tripolar structure, formed by a cyclonic core with two
anticyclonic satellites, which eventually rotates in a cyclonic direction (see van Heijst
et al. 1991). The parabolic surface, however, induces the tripole to drift towards the
centre of the tank. Velasco Fuentes et al. (1996) showed that this behaviour is due to
the alternating intensification of the negative satellites, which pair with the cyclonic
core as the tripole rotates.

Figure 3 shows the evolution of an isolated vortex calculated numerically with
model (2.17)—(2.20) and using the same experimental parameters. The initial vorticity
distribution, given by (3.2), was randomly perturbed using a similar method to Orlandi
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& van Heijst (1992), who studied numerically the tripole evolution over a flat bottom.
A perturbation of this type leads to the formation of the tripolar vortex structure.
Relative vorticity contours are shown for similar times as the experiment (except the
last panel), during a timespan of approximately 1.15T. This simulation shows that
the main features of the experimental results in figure 2 are well-reproduced, namely
the tripole formation at t = 90s and the anticyclonic rotation of the whole structure
during the experiment. From the number of contours at each time it can be observed
that the numerical vortex decays at a very similar rate as in the experiment (the
quantitative vortex decay is further examined below). It must be emphasized that the
most important result is not the agreement between the experiment and simulation,
but that such an agreement is observed for more than one Ekman period. Perhaps
the main difference is that the experimental vortex drifts slightly more to the left
of the domain, whilst the numerical vortex remains at the centre. The reason for
this behaviour might be related to a small impulse to the vortex when releasing the
cylinder within which it was created (P. Vosbeek, personal communication).

Since topographic variations are very small in this experiment, one may wonder
whether the conventional quasi-geostrophic approximation could be sufficient to
obtain a similar result as with the extended model. The answer is no. The quasi-
geostrophic formulation is obtained by writing the depth field as h = H(1 — hg/H),
and by considering small topographic variations, hg/H < 1. Thus the potential
vorticity can be approximated as

B o+f
1= HO = hy/H)

_otf
H
Neglecting terms O(whg/H), O(fh3/H?) and higher, the potential vorticity is reduced
to g~ (f +w+ fhg/H)/H. Omitting nonlinear Ekman terms in (2.20), and defining
the horizontal velocities as in the two-dimensional case (equations (2.22) and (2.23)),
the vorticity equation becomes

(1+hg/H + ). (3.5)

— +J (. v") =W — JE fo, (3.6)
where the quasi-geostrophic potential vorticity is defined as

qgc = o+ fhg/H. (3.7)

This approximation contains only the linear bottom friction term, whilst topographic
variations are contained in the potential vorticity definition.

Figure 4 shows the vorticity contours of an identical vortex during the same time-
span shown in figure 3, from a numerical simulation based on the quasi-geostrophic
model (3.6). The differences with the new model are remarkable, since the tripolar
vortex has not even developed, and the vortex just drifts towards the centre of the
domain. This is a clear indication of the importance of nonlinear Ekman terms. In
order to verify this assertion, an additional simulation based on the extended model
(2.20) but now using only the linear Ekman effect was performed (not shown here).
As expected, the result is almost identical to the quasi-geostrophic simulation.

A more quantitative test consists of comparing the peak vorticity decay in the
experiment and the simulations. Figure 5 shows the experimental values measured by
Vosbeek (1998) and the calculated results from simulations based on the extended and
the quasi-geostrophic models. It is observed that although the new formulation slightly
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FIGURE 4. Sequence of vorticity contours of a tripolar vortex in a numerical simulation based on
the quasi-geostrophic model, using the same flow parameters and contours as in figure 2.
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FIGURE 5. (a) Time evolution of the tripole’s peak vorticity. Circles denote measurements from the
experiment shown in figure 2. The solid lines denote the numerical simulation using the extended
model, dashed lines represent the quasi-geostrophic simulation, and dash-dotted lines denote the
numerical simulation without Ekman effects. (b) The same result in a logarithmic scale.

overestimates the peak vorticity decay, it gives a much better result than the quasi-
geostrophic approximation, which decays exponentially, as shown in figure 5(b). The
ability of the numerical solution to represent quantitatively the experimental result
is remarkable given that the duration of the simulation was greater than the Ekman
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timescale, which is much longer than the rotation period of the system. The decay in
the absence of bottom friction, calculated with equations (2.26)—(2.29), is also shown.

3.2. Vortices over a topographic ridge

In this section, the qualitative evolution of cyclonic vortices encountering a topo-
graphic ridge is presented. Here it is shown that, even though the ridge is a more
pronounced topography than the parabolic surface, the experimental vortex evolu-
tion is numerically well-simulated by using the general two-dimensional model. The
vortex-ridge interaction problem was studied in detail by Zavala Sanson (2002), who
reported laboratory experiments and numerical simulations. For further details on
the experimental procedures and results the reader is referred to that study.

In the experiment presented here, the Coriolis parameter was f = 1s~!, whilst the
maximum depth of the rectangular tank (with the same dimensions as in previous
example, 150cm x 100cm) was H = 21 cm. A topographic ridge with an isosceles-
triangular cross-section was fixed on the otherwise flat bottom of the tank. The ridge
height was h, = 3cm and the (half-) width W = 10cm. The top of the ridge is at
x = 75cm and the edges are at xj.;, = 75 — W, and X, = 75 + W cm. In contrast
with the y-plane experiment, it is anticipated here that changes in depth due to the
ridge are much more important than the effects of the parabolic free surface, and
therefore the latter will be ignored.

For these experiments cyclonic sink vortices were used. The sink vortices have a
single-signed vorticity and are hence non-isolated. This type of vortex is produced by
locally syphoning a fixed amount of fluid, during a certain period of time, through
a thin perforated tube (for further details, see e.g. Hopfinger & van Heijst 1993).
For the flat-bottom case, typical radial distributions of the vorticity and azimuthal
velocity are

_rz
a)sink(r) = o €Xp (1{2> 5 (38)

R2w —r2
vant) = 552 (1=ex0+ (T2 ) ). (9)

where wy is the peak vorticity, R a horizontal length scale, and r the radial distance
to the centre of the vortex. As mentioned before, such structures have a single-
signed vorticity and are hence non-isolated, which allows the vortex to experience the
influence of the ridge, even when it is initially placed at a large distance (compared
with the vortex size) from the topographic feature.

Figure 6 presents the evolution of a sink vortex (visualized with dark dye) en-
countering the ridge. The cyclone is created at (xo, yo) = (50cm,20cm) and its ini-
tial parameters are approximately wy = 4s~! and R = 2.5cm, which gives an initial
Rossby number of v, (R)/fR ~ 1.2. These parameters are obtained by repeating
the experiment with passive particles floating over the free surface, and fitting the
experimental data to (3.9) (analogous to the tripole experiment, see also e.g. ZHO00).
The circle indicates the approximate size and position of the vortex at t =0s (i.e.
when the forcing was stopped). Dashed lines show the edges of the ridge, which is
centred at x = 75cm. The figure shows the vortex evolution during a strong inter-
action: the vortex approaches the ridge, climbs the ascending slope, and crosses to
the other side, now moving in the opposite direction. At t = 150s, the vortex is at
the top of the ridge and the shape becomes slightly elliptical, with the major axis
perpendicular to the isobaths. When the vortex has crossed the ridge it is strongly
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FIGURE 6. Top view photographs showing the evolution of a vortex during a strong interaction
with a topographic ridge. The parameters of the ridge are h, = 3cm and W = 10cm.

deformed and the direction of motion is reversed, i.e. the vortex now moves in the new
local northwestern direction, imposed by the opposite slope, trying to cross back over
the ridge again. During this process part of its mass has been lost at the left-hand
side (t = 190-2105s). The formation of a thin filament at the right-hand side of the
vortex at t = 190s is also very clear. In the final stages of the experiment the vortex
has been dissipated and the dyed fluid forms a long tendril distributed along the
ridge (t = 230-2705s). Note that using H,, ~ 20cm, v = 0.0lcm?s™! and f = 1s7! in
expression (3.1), gives the Ekman period of approximately Tr =~ 280s, which indicates
that the experimental vortex is affected by Ekman damping effects.

The elliptical shape of the vortex when it crosses the top of the ridge is associated
with the topographic Rossby radiation over the slopes of the topography. Zavala
Sanson (2001) showed that this process is due to the formation of opposite circulation
cells (i.e. anticyclonic) formed over the ridge, due to squeezing effects (not visible
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FIGURE 7. Calculated evolution of 500 tracers initially placed in a circle of radius 7cm and centred
at the vortex core, showing a strong interaction comparable with the experiment in figure 6. The
flow parameters are: H = 21cm, R = 2.5¢cm, wy = 35~ and (xo, yo) = (50 cm, 20 cm).

from the presented photographs). Then, the combination of these circulation patterns
produces the subsequent vortex deformation and formation of filaments. In contrast
with the parabolic-free-surface case, changes in depth associated with the ridge are
important enough to produce topographic radiation.

The qualitative experimental results can be numerically reproduced, as shown in
figure 7, where the calculated evolution of 500 passive tracers initially placed around
the vortex core is presented. The tracers are randomly distributed, and their evolution
is equivalent to the dye distribution in the laboratory experiments. It is remarkable
that the complicated dye distributions in the experiments are well-reproduced during
the simulation, namely the initial deformation of the vortex (t =150 and 170s),
and the formation of long filaments as the vortex experiences the opposite slope
of the ridge (t = 200 and 220s). Even for later times (t =240 and 270s) the dye
evolution is quite similar. This figure is clear evidence that the flow remains nearly
two-dimensional, and that (2.19)—(2.10) represent the physics of the problem very well.

The correspondence between the experiment and the simulation is not complete,
mainly because the initial vortex in the laboratory is slightly affected by the ridge
when it is created, in contrast with the initial condition in the numerical case, which
is exactly circular. Taking into account that the flow evolution in the vortex—ridge
problem is very complicated, however, it is worth emphasizing that the qualitative
agreement shown in previous figures is an important result for validating the general
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model. As expected, when the simulation is repeated in the absence of Ekman terms,
the numerical result (not shown here) differs strongly from the experiment (Zavala
Sanson 2001).

4. Final remarks

A general two-dimensional model for rotating barotropic flows over variable topog-
raphy, together with Ekman effects, was derived. From this formulation some other
two-dimensional models can be recovered, for instance the barotropic non-divergent
equations, (2.26)—(2.29) (see e.g. Grimshaw et al. 1994), or the model with Ekman
friction over a flat bottom, (2.30)—(2.33), developed in ZHOO (see also Zavala Sanson
et al. 2001). The extended model can also be applied to flows over a flat bottom and a
spatially variable surface. Its main characteristic is the inclusion of nonlinear Ekman
terms in the vorticity evolution equation, in addition to the well-known linear damp-
ing term. Another difference with conventional formulations is that Ekman terms
in (2.20) contain the x, y-dependent factor 1/h(x,y). In contrast, for a flat bottom
and for the quasi-geostrophic regime (i.e. with small depth variations), this factor is
constant.

It should be mentioned that the linear Ekman condition (2.6) is used as the
lower boundary condition. This assumption, however, is only strictly valid for low-
Rossby-number flow, ¢ = w/f < 1. Therefore the pumping from the Ekman layer
should be proportional to w + O(e) instead of just w (plus topographic terms).
As explained in ZHO00, the ‘extra’ vertical velocity is not taken into account in
the present approximation. The justification for using this procedure is empirical,
since laboratory experiments can be simulated very effectively. Furthermore, this
condition allows a relatively simple formulation of bottom viscous effects, which
facilitates their analytical and numerical treatment and, more importantly, their
physical interpretation.

The general model was tested by considering the experimentally observed evolution
of an isolated vortex under the influence of the parabolic free surface in a rota-
ting tank (Vosbeek 1998). In this case, the vortex evolves into a tripolar structure
approaching the centre of the tank. Qualitative and quantitative experimental ob-
servations were compared with numerical simulations based on the general model,
namely the evolution of vorticity contours and the peak vorticity decay at the vortex
core during more than an Ekman period. The results strongly suggest that such
a two-dimensional formulation incorporates both inviscid and viscous topography
effects correctly. A similar procedure was applied to study the flow due to a non-
isolated sink vortex over a topographic ridge (a more complete description is found
in Zavala Sanson 2002). Good qualitative agreement between the experiment and
simulation was found even for times comparable with the Ekman timescale. This is
an important result since topographic changes are much more dramatic in the ridge
experiment than in the y-plane. For instance, depth variations due to the ridge are
of order hg/H ~ 3/21 ~ 0.14, while on the parabolic surface the depth variations are
only hg/H ~ 0.3/16 =~ 0.02.

Discrepancies between experiments and simulations can be attributed to the un-
avoidable differences in the initial conditions. Furthermore, the model does not take
into account the time-dependent free-surface deformations associated with the flow.
Additional studies with more complicated topographies and initial vorticity distri-
butions would be necessary in order to further affirm the validity of the model. It
must also be mentioned that this approximation clearly seems to be superior to the
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conventional quasi-geostrophic approximation (for the present flow regimes) and to
the inviscid model with variable topography. Conventional models are still useful
when studying the flow evolution during times shorter than the Ekman timescale.
For times comparable to or longer than the Ekman period, however, the present
formulation should be applied.

L.Z.S. gratefully acknowledges financial support from the Consejo Nacional de
Ciencia y Tecnologia (CONACYT, México) and from Eindhoven University of Tech-
nology (TUE, The Netherlands) during the early preparation of this paper.
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